Second order optimization of kernel parameters
نویسندگان
چکیده
In kernel methods such as SVMs, the data representation, implicitly chosen through the so-called kernel K(x,x′), strongly influences the performances. Recent applications [3] and developments based on SVMs have shown that using multiple kernels instead of a single one can enhance interpretability of the decision function and improve classifier performance. In such cases, a common approach is to consider that the kernel K(x,x′) is actually a convex linear combination of other basis kernels:
منابع مشابه
Optimizing kernel parameters by second-order methods
Radial basis function network (RBF) kernels are widely used for support vector machines (SVMs). But for model selection of an SVM, we need to optimize the kernel parameter and the margin parameter by time-consuming cross validation. In this paper we propose determining parameters for RBF and Mahalanobis kernels by maximizing the class separability by the second-order optimization. For multi-cla...
متن کاملAn Interior Point Algorithm for Solving Convex Quadratic Semidefinite Optimization Problems Using a New Kernel Function
In this paper, we consider convex quadratic semidefinite optimization problems and provide a primal-dual Interior Point Method (IPM) based on a new kernel function with a trigonometric barrier term. Iteration complexity of the algorithm is analyzed using some easy to check and mild conditions. Although our proposed kernel function is neither a Self-Regular (SR) fun...
متن کاملCVaR Reduced Fuzzy Variables and Their Second Order Moments
Based on credibilistic value-at-risk (CVaR) of regularfuzzy variable, we introduce a new CVaR reduction method fortype-2 fuzzy variables. The reduced fuzzy variables arecharacterized by parametric possibility distributions. We establishsome useful analytical expressions for mean values and secondorder moments of common reduced fuzzy variables. The convex properties of second order moments with ...
متن کاملInvasive Weed Optimization Algorithm for Optimizating the Parameters of Mixed Kernel Twin Support Vector Machines
How to select the suitable parameters and kernel model is a very important problem for Twin Support Vector Machines (TSVMs). In order to solve this problem, one solving algorithm called Invasive Weed Optimization Algorithm for Optimizating the Parameters of Mixed Kernel Twin Support Vector Machines (IWO-MKTSVMs) is proposed in this paper. Firstly, introducing the mixed kernel, the twin support ...
متن کاملISAR Image Improvement Using STFT Kernel Width Optimization Based On Minimum Entropy Criterion
Nowadays, Radar systems have many applications and radar imaging is one of the most important of these applications. Inverse Synthetic Aperture Radar (ISAR) is used to form an image from moving targets. Conventional methods use Fourier transform to retrieve Doppler information. However, because of maneuvering of the target, the Doppler spectrum becomes time-varying and the image is blurred. Joi...
متن کامل